Cluster scattering in the non-local model
Cluster scattering in the non-local model
Blog Article
Scattering of weakly bound nuclei with a pronounced cluster structure is strongly affected by their breakup.Usually, this mechanism is accounted for in a three-body model with pairwise potentials.The interaction potentials between complex systems are non-local due to the existence of excitation Satellite Coffee Servers channels and antisymmetrization.
However, a common practice is to use local optical potentials in cluster scattering studies.To assess the validity of replacing non-local optical potentials by their local equivalents, we extend the local-equivalent continuum-discretized coupled-channel (LECDCC) approach proposed by us for deuteron scattering in [Phys.Rev.
C98, 011601(R) (2018)] to the case of cluster scattering.We consider the case of 6Li + 120Sn at 27 and 60 MeV, and compare the angular distributions and reaction cross sections for elastic and breakup cross sections with those obtained in the standard continuum-discretized coupled-channel (CDCC) method with local equivalents of non-local potentials.We found that while elastic scattering is not RAMEN ASIAN VEG significantly affected by non-locality, the breakup observables could be affected by up to 20% depending on kinematical conditions of their observation.